If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+50x-600=0
a = 3; b = 50; c = -600;
Δ = b2-4ac
Δ = 502-4·3·(-600)
Δ = 9700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9700}=\sqrt{100*97}=\sqrt{100}*\sqrt{97}=10\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{97}}{2*3}=\frac{-50-10\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{97}}{2*3}=\frac{-50+10\sqrt{97}}{6} $
| 4x+x=348 | | X=13x+30 | | Y=2-x^2-4/x^2 | | 4x-6=5x+1=2x+2 | | 4x-6+5x+1=2x+2 | | 5n+10=n+30 | | 10*((1.07)^x)=2000 | | 2(x-3)=3x-22 | | 5n=2n6 | | 5x-3+5x=5(4x-2)+5 | | 21=n+3 | | 18=0.5x=-2 | | 3x+29=87 | | 0,5+4=4x-3 | | (3x+8)(6x+1)=180 | | (7y-1)=(5y+21) | | 6x+6=6(x-3) | | 6y+40=360 | | y=6y+40 | | -2x-9+3x-8+4x+2=3x+1 | | x+0.2=-08 | | 2x-3=-4x19 | | 9y-8=5y+12 | | 4x+3+6x-1=6+4x+2+9 | | 8x+29=4x+5 | | x²+5x=52 | | 3x14=x28 | | 7(9+r)=147 | | 47+2p=5 | | 4(24+s)=216 | | 24+7a=3 | | (4x-7)+(x+3)=-1 |